Monosynaptic connections between identified A and B photoreceptors and interneurons in Hermissenda: evidence for labeled-lines.

نویسندگان

  • T Crow
  • L M Tian
چکیده

The cellular and synaptic organization of the eye of the nudibranch mollusk Hermissenda is well-documented. The five photoreceptors within each eye are mutally inhibitory and can be classified into two types: A and B based on electrophysiological and anatomical criteria. Two of the three type B and two type A photoreceptors can be further identified according to their medial or lateral positions within each eye. In addition to reciprocal synaptic connections between photoreceptors, photoreceptors also project to second-order neurons in the cerebropleural ganglion. The second-order neurons receive convergent synaptic input from two additional sensory pathways; however, it has not been previously established if lateral A, lateral B, or medial B photoreceptors converge onto the same second-order neurons. To determine the specific synaptic organization of these components of the visual system, we have examined monosynaptic connections between identified lateral and medial type A and B photoreceptors and second-order cerebropleural (CP) interneurons. We found that monosynaptic connections between identified lateral A and lateral and medial B photoreceptors and CP interneurons follow a labeled-line principle. Illumination of the eyes or extrinsic depolarizing current applied to identified photoreceptors evoked excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs, respectively) in different CP interneurons. The PSPs in CP interneurons followed one-for-one spikes in the photoreceptors and could be elicited in artificial seawater solutions containing high divalent cations. Identified photoreceptors projected to more than one CP interneuron and expressed both excitatory and inhibitory connections with the different CP interneurons. In examples where a monosynaptic connection between a lateral B photoreceptor and a CP interneuron was identified, lateral A, medial A, or medial B photoreceptors did not project to the same CP interneuron. Moreover, when connections between medial B and CP interneurons were identified, lateral A, medial A, and lateral B connections were not found to project to the same CP interneuron. Similar results were obtained for a lateral A and CP interneuron connection. These results indicate that divergent labeled-lines exist between specific photoreceptors and second-order CP interneurons and potential convergence of synaptic input from primary and secondary elements of the visual system must occur at sites that are postsynaptic to the CP interneurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Network interneurons underlying ciliary locomotion in Hermissenda.

In the nudibranch mollusk Hermissenda, ciliary locomotion contributes to the generation of two tactic behaviors. Light elicits a positive phototaxis, and graviceptive stimulation evokes a negative gravitaxis. Two classes of light-responsive premotor interneurons in the network contributing to ciliary locomotion have been recently identified in the cerebropleural ganglia. Aggregates of type I in...

متن کامل

Morphological characteristics and central projections of two types of interneurons in the visual pathway of Hermissenda.

The synaptic interactions between photoreceptors in the eye and second-order neurons in the optic ganglion of the nudibranch mollusk Hermissenda are well characterized. However, the higher-order neural circuitry of the visual system, consisting of cerebropleural interneurons that receive synaptic input from photoreceptors and project to pedal motor neurons that mediate visually guided behaviors...

متن کامل

Facilitation of monosynaptic and complex PSPs in type I interneurons of conditioned Hermissenda.

Synaptic plasticity and intrinsic changes in neuronal excitability are two mechanisms for Pavlovian conditioning. Pavlovian conditioning of Hermissenda produces synaptic facilitation of monosynaptic medial B-medial A IPSPs and intrinsic changes in excitability of type A and B cells in isolated and intact sensory neurons of the conditioned stimulus (CS) pathway. Recently two types of interneuron...

متن کامل

Enhancement of type B and A photoreceptor inhibitory synaptic connections in conditioned Hermissenda.

Intrinsic changes have been identified in isolated and intact type A and type B photoreceptors following classical conditioning of the nudibranch mollusk Hermissenda. Aspects of various intrinsic, nonsynaptic modifications are expressed by alterations in the excitability of identified photoreceptors in response to the conditioned stimulus. In addition to changes in cellular excitability, change...

متن کامل

Sensory regulation of network components underlying ciliary locomotion in Hermissenda.

Ciliary locomotion in the nudibranch mollusk Hermissenda is modulated by the visual and graviceptive systems. Components of the neural network mediating ciliary locomotion have been identified including aggregates of polysensory interneurons that receive monosynaptic input from identified photoreceptors and efferent neurons that activate cilia. Illumination produces an inhibition of type I(i) (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 84 1  شماره 

صفحات  -

تاریخ انتشار 2000